7,006 research outputs found

    Ludics and its Applications to natural Language Semantics

    Get PDF
    Proofs, in Ludics, have an interpretation provided by their counter-proofs, that is the objects they interact with. We follow the same idea by proposing that sentence meanings are given by the counter-meanings they are opposed to in a dialectical interaction. The conception is at the intersection of a proof-theoretic and a game-theoretic accounts of semantics, but it enlarges them by allowing to deal with possibly infinite processes

    A feasible algorithm for typing in Elementary Affine Logic

    Full text link
    We give a new type inference algorithm for typing lambda-terms in Elementary Affine Logic (EAL), which is motivated by applications to complexity and optimal reduction. Following previous references on this topic, the variant of EAL type system we consider (denoted EAL*) is a variant without sharing and without polymorphism. Our algorithm improves over the ones already known in that it offers a better complexity bound: if a simple type derivation for the term t is given our algorithm performs EAL* type inference in polynomial time.Comment: 20 page

    Two loop detection mechanisms: a comparison

    Get PDF
    In order to compare two loop detection mechanisms we describe two calculi for theorem proving in intuitionistic propositional logic. We call them both MJ Hist, and distinguish between them by description as `Swiss' or `Scottish'. These calculi combine in different ways the ideas on focused proof search of Herbelin and Dyckhoff & Pinto with the work of Heuerding emphet al on loop detection. The Scottish calculus detects loops earlier than the Swiss calculus but at the expense of modest extra storage in the history. A comparison of the two approaches is then given, both on a theoretic and on an implementational level

    Classical Structures Based on Unitaries

    Full text link
    Starting from the observation that distinct notions of copying have arisen in different categorical fields (logic and computation, contrasted with quantum mechanics) this paper addresses the question of when, or whether, they may coincide. Provided all definitions are strict in the categorical sense, we show that this can never be the case. However, allowing for the defining axioms to be taken up to canonical isomorphism, a close connection between the classical structures of categorical quantum mechanics, and the categorical property of self-similarity familiar from logical and computational models becomes apparent. The required canonical isomorphisms are non-trivial, and mix both typed (multi-object) and untyped (single-object) tensors and structural isomorphisms; we give coherence results that justify this approach. We then give a class of examples where distinct self-similar structures at an object determine distinct matrix representations of arrows, in the same way as classical structures determine matrix representations in Hilbert space. We also give analogues of familiar notions from linear algebra in this setting such as changes of basis, and diagonalisation.Comment: 24 pages,7 diagram

    On Context Semantics and Interaction Nets

    Get PDF
    International audienceContext semantics is a tool inspired by Girard' s geometry of interaction. It has had many applications from study of optimal reduction to proofs of complexity bounds. Yet, context semantics have been defined only on λ\lambda-calculus and linear logic. In order to study other languages, in particular languages with more primitives (built-in arithmetic, pattern matching,...) we define a context semantics for a broader framework: interaction nets. These are a well-behaved class of graph rewriting systems. Here, two applications are explored. First, we define a notion of weight, based on context semantics paths, which bounds the length of reduction of nets. Then, we define a denotational semantics for a large class of interaction net systems

    A Local System for Classical Logic

    Full text link

    Interaction Graphs: Full Linear Logic

    Get PDF
    Interaction graphs were introduced as a general, uniform, construction of dynamic models of linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This series of work was inspired from Girard's hyperfinite GoI, and develops a quantitative approach that should be understood as a dynamic version of weighted relational models. Until now, the interaction graphs framework has been shown to deal with exponentials for the constrained system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older constructions by Girard, one can clearly define "full" exponentials, but at the cost of these quantitative features. We show here that allowing interpretations of proofs to use continuous (yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs constructions were these sets of states were discrete (and finite), provides a model for full linear logic with second order quantification

    Quantitative Models and Implicit Complexity

    Full text link
    We give new proofs of soundness (all representable functions on base types lies in certain complexity classes) for Elementary Affine Logic, LFPL (a language for polytime computation close to realistic functional programming introduced by one of us), Light Affine Logic and Soft Affine Logic. The proofs are based on a common semantical framework which is merely instantiated in four different ways. The framework consists of an innovative modification of realizability which allows us to use resource-bounded computations as realisers as opposed to including all Turing computable functions as is usually the case in realizability constructions. For example, all realisers in the model for LFPL are polynomially bounded computations whence soundness holds by construction of the model. The work then lies in being able to interpret all the required constructs in the model. While being the first entirely semantical proof of polytime soundness for light logi cs, our proof also provides a notable simplification of the original already semantical proof of polytime soundness for LFPL. A new result made possible by the semantic framework is the addition of polymorphism and a modality to LFPL thus allowing for an internal definition of inductive datatypes.Comment: 29 page

    A P-Time Completeness Proof for Light Logics

    Full text link

    A lambda calculus for quantum computation with classical control

    Full text link
    The objective of this paper is to develop a functional programming language for quantum computers. We develop a lambda calculus for the classical control model, following the first author's work on quantum flow-charts. We define a call-by-value operational semantics, and we give a type system using affine intuitionistic linear logic. The main results of this paper are the safety properties of the language and the development of a type inference algorithm.Comment: 15 pages, submitted to TLCA'05. Note: this is basically the work done during the first author master, his thesis can be found on his webpage. Modifications: almost everything reformulated; recursion removed since the way it was stated didn't satisfy lemma 11; type inference algorithm added; example of an implementation of quantum teleportation adde
    • …
    corecore